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1 Introduction

Two-dimensional sigma-models on supergroups have applications to a wide range of top-

ics such as the integer quantum hall effect, quenched disorder systems, polymers, string

theory, as well as other domains in physics (see e.g. [1–5]). The principal chiral model is

perturbatively conformal on various supergroups [6, 7] with or without the addition of a

Wess-Zumino term, and at least to two loop order on their cosets with respect to a maximal

regular subalgebra [7]. Sigma models on graded supercosets are also believed to be confor-

mal [8]. Thus, these models have an infinite dimensional symmetry algebra that should tie
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in with their supergroup symmetry. An extended non-linear symmetry algebra was iden-

tified in [6] but the representation theory of the algebra seems difficult to establish. Steps

towards solving these models were made using various techniques [9–11]. In this paper, we

exhibit a conformal current algebra in these models. The algebra of currents is non-chiral

and implies conformal symmetry, hence the name.

The models under discussion enter as the key building blocks in worldsheet sigma-

models on supersymmetric AdS backgrounds in string theory. The supergroup PSU(1, 1|2)

principal chiral model corresponds to a supersymmetric AdS3 × S3 background with

Ramond-Ramond flux [6, 12]. Since a theory of quantum gravity on asymptotically AdS3

space-times, supplemented with appropriate boundary conditions, exhibits an infinite di-

mensional conformal symmetry algebra [13], we should be able to construct those generators

from the worldsheet theory. Indeed, for AdS3 string theory with only Neveu-Schwarz-

Neveu-Schwarz flux, it has been shown how to construct the space-time Virasoro algebra

in terms of the worldsheet current algebra [14–16]. To perform a similar construction in

Ramond-Ramond backgrounds, one needs to understand the worldsheet current algebra

for two-dimensional models with supergroup targets.

A second application within this context is the extension of our analyis to supercoset

manifolds, which includes the AdS5 × S5 background of string theory. The worldsheet

current algebra is tied in with the integrability of the worldsheet theory [17]. Our work may

help in systematically exploiting the integrability of the worldsheet model at the quantum

level, with applications to the solution of the spectrum of planar four-dimensional gauge

theories (see e.g. [18]) via the AdS/CFT correspondence.

The plan of the paper is as follows. In section 2 we kick off with a general analysis of

two-dimensional current algebra operator product expansions that are consistent with lo-

cality, Lorentz invariance and parity-time reversal. We exhibit a particular current algebra

that is non-chiral and consistent with conformal invariance. We then move on to exhibit a

realization of the algebra in a conformally invariant model on a supergroup manifold.

We calculate perturbatively the current two- and three-point functions of these mod-

els in section 3. From these correlators we infer the operator product expansions of the

currents, which are shown to fall into the conformal current algebra class discussed in

section 2. In section 4 we analyze deformed Wess-Zumino-Witten models on supergroups

using conformal perturbation theory. We compute the operator product expansions of the

currents to all orders and resum the series, thereby demonstrating that the resulting alge-

bra matches the results obtained using purely algebraic properties of the supergroups. We

analyze the current algebra on the cylinder in terms of a Fourier decomposition in section 5

and show the existence of a Kac-Moody subalgebra and an infinite set of commuting opera-

tors that transform amongst each other under the Kac-Moody subalgebra. In section 6 we

discuss some applications of the conformal current algebra that we have found and possible

future directions of work.
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2 Current algebras in two dimensions

Before we compute the current algebra operator product expansion [19] for supergroup

sigma-models, it is interesting to analyze the generic operator product expansions (OPEs)

involving the currents for a two-dimensional model which is local, Lorentz invariant and

which respects parity-time reversal.

Previously, the generic two-dimensional current algebra was analyzed in [20] where

it was applied to an asymptotically free sigma-model — the O(n) sigma-model. Parity

symmetry was assumed to be valid in the analysis. Later, a similar analysis was per-

formed [21, 22] for massive models with Wess-Zumino-Witten ultraviolet fixed points. In

both cases, the study was applied to argue for the integrability of the two-dimensional

sigma-model in the quantum theory.

The models that we will study have the distinctive feature that they are conformal.

Moreover, the Wess-Zumino term breaks parity invariance. Therefore, we start by analyzing

the generic current operator product expansions consistent with locality, Lorentz invariance

and PT-invariance only. In the following, we generalize the methodology of [20].

2.1 Locality, Lorentz invariance and PT-invariance

In the absence of parity invariance, the vector representation of the two-dimensional Lorentz

group splits into two one-dimensional irreducible representations. A current jµ can there-

fore be split into two irreducible representations j+ and j− of the two-dimensional Lorentz

group.1 We write the OPEs in terms of these irreducible components, leading to three in-

dependent OPEs, between the pairs of current components (j+, j+), (j+, j−), and (j−, j−).

We first analyze the OPE between the components j+ and j+. We take the currents to

be in the adjoint representation of a symmetry group G of the model: j+ = ja
+ta where ta

spans the Lie algebra of G. We write down the generic OPE in terms of Lorentz invariant

coefficient functions. Moreover, we assume that the only low-dimensional operators that

appear in the operator product expansion are the identity operator, the currents and their

derivatives. We also assume that the currents have conformal dimension one. Thus the

previous list of allowed operators in the OPE should account for all the terms up to regular

ones. The j+j+ OPE is then given by:

ja
+(x)jb

+(0) ∼ αab(x−)2d1(x
2) + βab

c(x
−)2
[

d2(x
2)x+jc

+(0) + d3(x
2)x−jc

−(0)

+e1(x
2)x+x−∂+jc

−(0) + e2(x
2)x+x−∂−jc

+(0)

+e3(x
2)(x+)2∂+jc

+(0) + e4(x
2)(x−)2∂−jc

−(0)
]

+ . . . (2.1)

where the functions di, ei are functions of the Lorentz invariant x2 = x+x−. The tensor αab

is an invariant two-tensor in the product of adjoint representations, and βab
c represents an

adjoint representation in the product of two adjoints. We will assume that αab corresponds

to a non-degenerate bi-invariant metric κab and that the tensor βab
c is equal to the structure

1We work in Lorentzian signature in this section. We define x± = x±t and ds2 = −dt2+dx2 = dx+dx−.

We denote x2 = x+x−.
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constants fab
c of the Lie algebra of G. We take the structure constants to be anti-symmetric

in its indices.2 We use the fact that we can interchange operators3 to determine that the

above OPE should be equal to:

jb
+(0)ja

+(x) ∼ κba(x−)2d1 − f ba
c(x

−)2
(

d2x
+jc

+(x) + d3x
−jc

−(x)

−e1x
+x−∂+jc

−(x) − e2x
+x−∂−jc

+(x) − e3(x
+)2∂+jc

+(x) − e4(x
−)2∂−jc

−(x)
)

∼ κbax−x−d1 − f ba
cx

−x−
(

d2x
+jc

+(0) + d3x
−jc

−(0)

+(d3 − e1)x
+x−∂+jc

−(x) + (d2 − e2)x
+x−∂−jc

+(x)

+(d2 − e3)x
+x+∂+jc

+(x) + (d3 − e4)x
−x−∂−jc

−(x)
)

(2.2)

from which we derive the equations:

e1 = d3/2 e2 = d2/2

e3 = d2/2 e4 = d3/2, (2.3)

which gives rise to the simplified operator product expansion:

ja
+(x)jb

+(0) ∼κab(x−)2d1 + fab
c(x

−)2
[

d2x
+jc

+(0) + d3x
−jc

−(0) +
d3

2
x+x−∂+jc

−(0)

+
d2

2
x+x−∂−jc

+(0) +
d2

2
(x+)2∂+jc

+(0) +
d3

2
(x−)2∂−jc

−(0)

]

+ . . . (2.4)

The OPE has one free coefficient d1 (function of x2) at leading order, and two at subleading

order. We similarly obtain:

ja
−(x)jb

−(0) ∼κab(x+)2d4 + fab
c(x

+)2
[

d5x
−jc

−(0) + d6x
+jc

+(0) +
d5

2
x+x−∂+jc

−(0)

+
d5

2
(x−)2∂−jc

−(0) +
d6

2
x+x−∂−jc

+(0) +
d6

2
(x+)2∂+jc

+(0)

]

+ . . . (2.5)

For the OPE between j+ and j− we don’t get as many constraints. We find 7 more

free functions:

ja
+(x)jb

−(0) ∼ κabd7 + fab
c

[

d8x
+jc

+(0) + d9x
−jc

−(0) + d13x
+x−∂+jc

−(0) + d12x
+x−∂−jc

+(0)

+d10(x
+)2∂+jc

+(0) + d11(x
−)2∂−jc

−(0)
]

+ . . . (2.6)

We have a total of 13 free coefficient functions.

2More precisely, we take the structure constants to be graded anti-symmetric when G is a supergroup.

Although the grading is crucial, it will not affect our formulas, except for a plethora of minus signs when

interchanging operators — these will not influence our final results much. We maintain consistency with

the grading throughout section 2, but not necessarily through the rest of the paper.
3Up to a minus sign for fermionic operators. We see, for example, that the interchange of fermionic

operators will cancel a minus sign from the grading of the superalgebra when G is a supergroup.
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2.2 Current conservation

We now impose consistency of the operator product expansions of the currents with current

conservation. We choose the relative normalization of the two components of the currents

such that the equation of current conservation reads:4

∂µja
µ = ∂−ja

+ + ∂+ja
− = 0. (2.7)

Current conservation implies that one of the coefficients in the j+j− OPE (namely d12+d13)

becomes redundant. We check that the OPEs of the current conservation equation (2.7)

with the currents j+ and j− vanish. That leads to the set of equations:5

d1 +
x2

2
d′1 +

1

2
d′7 = 0 , d2 +

x2

2
d′2 +

1

2
d′8 +

d8

2x2
= 0 ,

d4 +
x2

2
d′4 +

1

2
d′7 = 0 ,

3

2
d6 +

x2

2
d′6 +

1

2
d′8 = 0 ,

3

2
d3 +

x2

2
d′3 +

1

2
d′9 = 0 , 2d3 +

x2

2
d′3 + (d′9 − d′11) = 0

2d6 +
x2

2
d′6 + d′10 = 0 , d5 +

x2

2
d′5 + d′11 +

2

x2
d11 = 0 ,

d5 +
x2

2
d′5 +

1

2
d′9 +

1

2x2
d9 = 0 ,

d2 +
x2

2
d′2 + (d′8 − d′10) +

2

x2
(d8 − d10) = 0

3

2
(d6 − d5) +

x2

2
(d′6 − d′5) + (d′12 − d′13) +

1

x2
(d12 − d13) = 0 ,

3

2
(d2 − d3) +

x2

2
(d′2 − d′3) + (d′8 − d′12 − (d′9 − d′13)) +

1

x2
(d8 − d12 − (d9 − d13)) = 0 . (2.8)

We get a system of twelve first-order differential equations for twelve functions. We will

not try to solve them in full generality. Instead, we assume that the leading and subleading

singularities in the OPEs are powerlike. This leads to the following ansatz:

d1(x
2) = c1/x

4, d2(x
2) = c2/x

4, d3(x
2) = f1/x

4 ,

d4(x
2) = c3/x

4, d5(x
2) = c4/x

4, d6(x
2) = f7/x

4,

d7(x
2) = f2/x

2, d8(x
2) = f3/x

2, d9(x
2) = f4/x

2 . (2.9)

The coefficient ci’s and fi’s are now constant coefficients. Plugging this ansatz into the

equations (2.8), we get the following relations between the coefficients:

f2 = 0, f4 = f1, f3 = f7 = c4 − c2 + f1 . (2.10)

4We expect current conservation to only hold up to delta-function contact terms. We therefore do not

keep track of contact terms in the following.
5There is no equation corresponding to the operator ∂µjµ since the coefficient multiplies zero.
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The remaining equations in (2.8) then allow to solve for the subsubleading coefficient

functions in the OPEs:

d10(x
2) =

f7

x2
, d11(x

2) = 0,

(d′12 − d′13) +
1

x2
(d12 − d13) =

c2 − f1

2x4
. (2.11)

So it only remains to solve for d12(x
2) − d13(x

2) in terms of the ci and f1. Denoting

c2 − f1 = g, the general solution to the differential equation (2.11) reads:

d12(x
2) − d13(x

2) =
2c5

x2
+

g

2x2
log µ2x2 (2.12)

where c5 is a constant coefficient and µ is an arbitrary mass scale. We note that when the

coefficient g is non-zero, we can absorb the coefficient c5 in a redefinition of the mass scale

µ. So the OPEs are given in terms of five dimensionless coefficients. They read:

ja
+(x)jb

+(0) ∼
κabc1

(x+)2
+ fab

c

[

c2

x+
jc
+(0) +

(c2 − g)x−

(x+)2
jc
−(0) −

g

4

x−

x+

(

∂+jc
−(0) − ∂−jc

+(0)
)

+
c2

2
∂+jc

+(0) +
c2 − g

2

(x−)2

(x+)2
∂−jc

−(0)

]

+ . . .

ja
−(x)jb

−(0) ∼
κabc3

(x−)2
+ fab

c

[

c4

x−
jc
−(0) +

(c4 − g)x+

(x−)2
jc
+(0) +

g

4

x+

x−

(

∂+jc
−(0) − ∂−jc

+(0)
)

+
c4

2
∂−jc

−(0) +
c4 − g

2

(x+)2

(x−)2
∂+jc

+(0)

]

+ . . .

ja
+(x)jb

−(0) ∼ fab
c

[

c4 − g

x−
jc
+(0) +

(c2 − g)

x+
jc
−(0) +

(c4 − g)x+

x−
∂+jc

+(0)

−
(

c5 +
g

4
log µ2x2

)

(

∂+jc
−(0) − ∂−jc

+(0)
)

]

+ . . . (2.13)

It would be interesting to search for more general solutions to the set of differen-

tial equations.

2.3 The Maurer-Cartan equation

In this subsection we show that under certain circumstances, we can obtain further con-

straints on the current algebra. Consider a field g taking values in a Lie group. The

one-form dgg−1 satisfies the Maurer-Cartan equation

d(dgg−1) = dgg−1 ∧ dgg−1. (2.14)

We will get further constraints if we suppose that the components of the current are related

to the field g in the following way:

j+ = c+∂+gg−1, j− = c−∂−gg−1 (2.15)

– 6 –
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where c+ and c− are constant coefficients. The generators of the Lie (super-)algebra satisfy:

[ta, tb] = if c
abtc. Then the Maurer-Cartan equation takes the form

c−∂−ja
+ − c+∂+ja

− − ifa
bcj

c
+jb

− = 0. (2.16)

We want to ensure that this equation is also valid in the quantum theory. However the

operator defined as the product of two currents needs to be regularized. For this reason the

validity of the Maurer-Cartan equation in the quantum theory requires more discussion.

Normal ordering. In the quantum theory, we introduce a normal ordering for composite

operators based on a point-splitting procedure. The normal ordered product : O1O2 : (y)

of two operators O1 and O2 evaluated at the point y is defined to be the product of the

operator O1 at the point x with the operator O2 at the point y, in the limit as x approaches

y. The regularization amounts to dropping the terms that are singular in this limit. For

this procedure to be well-defined, it is important that the resulting operator is evaluated

at the point y. We will denote this procedure by

: O1O2 : (y) = lim
:x→y:

O1(x)O2(y) . (2.17)

We note that the operators within the normal ordered product : O1O2 : do not commute.6

We will later confirm that a natural choice for the normal ordered Maurer-Cartan equation

in this scheme is:7

c−∂−ja
+ − c+∂+ja

− −
i

2
fa

bc

(

: jc
+jb

− : +(−)bc : jb
−jc

+ :
)

= 0. (2.18)

Additional constraints from the Maurer-Cartan equation. As for the current

conservation equation, we ask for the OPE between the quantum Maurer-Cartan equa-

tion (2.18) and the current to vanish. The first non-trivial constraint is obtained for the

subleading terms. This leads to a relation between the coefficient of the current algebra

c1, c2 and g, and the coefficients c+ and c−:

(c+ + c−)(c2 − g) + ic1 = 0 . (2.19)

We similarly find a constraint linking c3, c4 and g to c+ and c−:

(c+ + c−)(c4 − g) + ic3 = 0 . (2.20)

When we consider concrete models realizing the current algebra, the coefficients c+ and

c− can be derived from the Lagrangian. The Maurer-Cartan equation then reduces the

number of free constant coefficients from five to three.

6See e.g. [23] for a discussion of this fact in the context of chiral conformal field theories.
7We use the notation (−)a = +1 if a is a bosonic index, and −1 if a is a fermionic index.

– 7 –
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2.4 The Euclidean current algebra

For future purposes, we wish to translate the result we obtained for the current operator

algebra into euclidean signature. We perform the Wick rotation t → −iτ , and define the

complex coordinates z = x − iτ , z = x + iτ . The current algebra OPEs become

ja
z (z)jb

z(0) ∼κab c1

z2
+ fab

c

[

c2

z
jc
z(0) + (c2 − g)

z

z2
jc
z(0)

−
g

4

z

z
(∂zj

c
z(0) − ∂zj

c
z(0)) +

c2

2
∂zj

c
z(0) +

c2 − g

2

z2

z2
∂zj

c
z(0)

]

+ . . .

ja
z (z)jb

z(0) ∼κabc3
1

z2 + fab
c

[

c4

z
jc
z(0) +

(c4 − g)z

z2 jc
z(0)

+
g

4

z

z
(∂zj

c
z(0) − ∂zj

c
z(0)) +

c4

2
∂zj

c
z(0) +

(c4 − g)

2

z2

z2 ∂zj
c
z(0)

]

+ . . .

ja
z (z)jb

z(0) ∼fab
c

[

(c4 − g)

z
jc
z(0) +

(c2 − g)

z
jc
z(0) +

(c4 − g)z

z
∂zj

c
z(0)

−(c5 +
g

4
log µ2|z|2)(∂zj

c
z(0) − ∂zj

c
z(0))

]

+ . . . (2.21)

Later on, we will compare the current algebra operator product expansions in equa-

tions (2.21) to those of a supergroup non-linear sigma-model with Wess-Zumino term.

We will find specific expressions for the coefficients ci and g in terms of the parameters in

the Lagrangian.

2.5 Conformal current algebra

It turns out that the above current algebra can become the building unit for a conformal

algebra when the Killing form of the (super-)group vanishes.8 In that special case the

current algebra is promoted to a conformal current algebra, namely, the Sugawara stress-

energy tensor built from the currents satisfies the canonical conformal operator product

expansion. The terms that in other circumstances spoil conformality are eliminated through

the fact that the Killing form is zero. The holomorphic component of the stress-energy

tensor is

T (w) =
1

2c1
: jbzj

b
z : (w), (2.22)

as we will demonstrate.9

8For simple super Lie algebras the vanishing of the Killing form is equivalent to the vanishing of the

dual Coxeter number.
9 We defined ja = jbκba and κacκcb = δa

b. In the following we also use the convention fabc = fab
dκdc.
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The current as a conformal primary. First we compute the OPE between the current

ja
z and its bilinear combination : jbzj

b
z :, using a point-splitting procedure:

ja
z (z) : jbzj

b
z : (w) = lim

:x→w:
ja
z (z)

[

jbz(x)jb
z(w)

]

(2.23)

= lim
:x→w:

[(

c1δ
a
b

(z − x)2
+ fa

bc

(

c2

z − x
jc
z(x) +

(c2 − g)(z − x)

(z − x)2
jc
z(x)

))

jb
z(w)

+jd
z (x)(−1)abκdb

(

c1κ
ab

(z − w)2
+ fab

c

×

(

c2

z − w
jc
z(w) +

(c2 − g)(z − w)

(z − w)2
jc
z(w)

))]

.

At this point we have to perform the OPE between the operators evaluated at the point x

and the operators evaluated at the point w. Then we take the limit where x goes to w and

discard the singular terms. We notice already that only the regular terms in the OPEs of

the second line will contribute to the final result. We get

ja
z (z) : jbzj

b
z : (w) = lim

:x→w:

[

c1
ja
z (w)

(z − x)2
+

c2f
a
bc

z − x

(

c1κ
cb

(x − w)2

+f cb
d

(

c2j
d
z (w)

x − w
+ (c2 − g)

x − w

(x − w)2
jd
z (w)

)

+ : jc
zj

b
z : (w)

)

+
(c2 − g)fa

bc(z − x)

(z − x)2

(

f cb
d

(

(c4 − g)jd
z (w)

x − w
+

(c2 − g)jd
z (x)

x − w

−
(

c5 +
g

4
log µ2|x − w|2

)

(∂zj
d
z (w) − ∂zj

d
z (w))

)

+ : jc
zj

b
z : (w)

)]

+c1
ja
z (w)

(z − w)2
+ (−1)bcfa

bc

c2

z − w
: jb

zj
c
z : (w)

+(−1)bcfa
bc

(c2 − g)(z − w)

(z − w)2
: jb

zj
c
z : (w) . (2.24)

Among the remaining terms, many cancel: every contraction of the invariant metric with

a structure constant gives zero by symmetry, and the double contractions of two structure

constants are proportional to the Killing form and thus also vanish. We are left with

ja
z (z) : jbzj

b
z : (w) = 2c1

ja
z (w)

(z − w)2
+ c2

fa
bc

z − w

(

(−1)bc : jb
zj

c
z : (w)+ : jc

zj
b
z : (w)

)

+(c2 − g)fa
bc

z − w

(z − w)2

(

(−1)bc : jb
zj

c
z : (w)+ : jc

zj
b
z : (w)

)

. (2.25)

The second term vanishes because of the anti-(super)symmetry of the structure constants.

We can simplify the third term using the Maurer-Cartan identity:

ja
z (z) : jbzj

b
z : (w) = 2c1

ja
z (w)

(z − w)2
+ 2i(c2 − g)

z − w

(z − w)2
(

c−∂ja
z (w) − c+∂ja

z (w)
)

. (2.26)

By current conservation this can be rewritten as:
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ja
z (z) : jbzj

b
z : (w) = 2c1

ja
z (w)

(z − w)2
+ 2i(c2 − g)

z − w

(z − w)2
(c− + c+)∂ja

z (w). (2.27)

We can now show that the current ja
z is a primary field of conformal weight one. We deduce

from the previous computation the OPE between the stress-energy tensor and the current

ja
z , by expanding the operators on the right-hand side in the neigbourhood of the point z:

2c1T (w)ja
z (z) = 2c1

ja
z (z)

(w − z)2
+ 2c1

∂ja
z (z)

w − z
+ 2(−c1 + i(c2 − g)(c− + c+))

z − w

(z − w)2
∂ja

z (z)

(2.28)

Using the relation obtained in equation (2.19), we finally have

T (w)ja
z (z) =

ja
z (z)

(w − z)2
+

∂ja
z (z)

w − z
, (2.29)

which shows that the current jz is a primary field of conformal dimension one. It can

similarly be checked that jz is a conformal primary of dimension zero.

The stress-energy tensor. We now want to compute the OPE between T (z) and T (w).

This calculation relies on the preceeding calculation and on the double pole in the current-

current operator product expansion. We get:

T (z)T (w) =
1

2c1
lim

:x→w:
T (z) [jza(x)ja

z (w)]

=
1

2c1
lim

:x→w:

[(

jza(x)

(z − x)2
+

∂jza(x)

z − x

)

ja
z (w)

+jza(x)

(

ja
z (w)

(z − w)2
+

∂ja
z (w)

z − w

)]

(2.30)

In the second line, only the regular terms in the remaining OPE’s will contribute to the

final result. In the first line, all the terms proportional to the structure constants disappear

once again. We get:

T (z)T (w) =
1

2c1
lim

:x→w:

[(

c1κbaκ
ba

(z − x)2(x − w)2
+

: jzaj
a
z : (w)

(z − x)2
−

2c1κbaκ
ba

(z − x)(x − w)3

+
: (∂jza)j

a
z : (w)

z − x

)

+
: jzaj

a
z : (w)

(z − w)2
+

: jza(∂ja
z ) : (w)

z − w

]

(2.31)

To take the limit, we expand all the functions of x in the neighbourhood of the point w

and keep only the regular term:

T (z)T (w) =
dim G

2(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
, (2.32)

which proves that we have indeed a conformal algebra of central charge c = dim G. For

supergroups, the relevant dimension is the superdimension (which is the self-contraction of

the invariant metric).
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Summary. We have shown that a fairly generic current algebra leads to a conformal

theory when the Killing form is zero. The corresponding stress-energy tensor is given by

the Sugawara construction. The holomorphic current component is a conformal primary

with respect to the holomorphic Virasoro algebra. The Sugawara energy-momentum tensor

has a central charge equal to the superdimension of the supergroup.

We note that a supergroup with zero Coxeter number shares some features with a free

theory. The central charge takes its naive value. The composite part of the Maurer-Cartan

equation does not need to be renormalized. We will see other simplifications for these

models further on.

3 Current algebra from supergroup current correlators

We now switch gears and consider a concrete model in which the generic analysis of two-

dimensional current algebras of section 2 can be applied. We consider a conformal super-

group sigma-model from the list given in [7]. Though we believe our analysis applies to the

whole list, some facts that we use below have been proven explicitly only for the PSL(n|n)

models. We will calculate two-, three- and four-point functions of currents. Later we will

infer the operator algebra of the currents from those correlation functions.

3.1 The model

We consider a supergroup non-linear sigma-model with standard kinetic term based on a

bi-invariant metric on the supergroup. It is the principal chiral model on the supergroup.

In addition we allow for a Wess-Zumino term. Therefore, we have two coupling constants,

namely the coefficient of the kinetic term 1/f2 and the coupling constant k preceding the

Wess-Zumino term. The action is:10

S = Skin + SWZ

Skin =
1

16πf2

∫

d2xTr′[−∂µg−1∂µg]

SWZ = −
ik

24π

∫

B

d3yǫαβγTr′(g−1∂αgg−1∂βgg−1∂γg) (3.1)

Using complex coordinates, and after taking the trace, the kinetic term becomes:

Skin = −
1

4πf2

∫

d2z(∂gg−1)c(∂gg−1)c. (3.2)

The field g takes values in a supergroup.

10Our normalizations and conventions are mostly as in [23]. In particular we define the primed trace

as Tr′(tatb) = 2κab where κab is normalized to be the Kronecker delta-function for a compact subgroup.

The action is written in terms of real euclidean coordinates. We soon switch to complex coordinates via

z = x1 + ix2. See [23] for further details. Starting in this section, we will no longer be careful in keeping

track of the signs due to the bosonic or fermionic nature of the super Lie algebra generators. They can

consistently be restored.
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From the action we can calculate the classical currents associated to the invariance of

the theory under left multiplication of the field g by a group element in GL and right mul-

tiplication by a group element in GR. The classical equations of motion for the model read:
(

kf2 + 1
)

∂Ja +
(

kf2 − 1
)

∂
(

gJg−1
)a

= 0, (3.3)

where we have used the standard expressions for the left- and right-current at the Wess-

Zumino-Witten point:11

J(z, z) = −k∂gg−1 and J(z, z) = kg−1∂g . (3.4)

The classical GL currents are given by:

jz = −
1

2

(

1

f2
+ k

)

∂gg−1 =
(1 + kf2)

2kf2
J

jz = −
1

2

(

1

f2
− k

)

∂gg−1 = −
(1 − kf2)

2kf2
(gJg−1). (3.5)

At the Wess-Zumino-Witten point f2 = 1/k the z-component of the left-moving current

becomes zero. As a consequence, the z-component J becomes holomorphic. A similar

phenomenon happens at the other Wess-Zumino-Witten point (f2 = −1/k) for the anti-

holomorphic component gJg−1. From now on, we will concentrate on the current j associ-

ated to the left action of the group. For future reference we note that the coefficients that

relate the left current components to the derivative of the group element are (see section 2):

c+ = −
(1 + kf2)

2f2
and c− = −

(1 − kf2)

2f2
. (3.6)

3.2 Exact perturbation theory

Elegant arguments were given [6] for the exactness of low-order perturbation theory for the

calculation of various observables in the supergroup model on PSL(n|n). In particular, we

will use these arguments to compute the (left) current-current two-point function exactly

to all orders in perturbation theory using the free theory. Similarly we also compute the

current three-point functions to all orders using perturbation theory up to first order in

the structure constants. Below, we summarize some important facts that lead to these

results [6].

The argument is essentially based on the special feature of the Lagrangian that all

interaction vertices are proportional to (powers of) the structure constants as well as certain

properties of the Lie superalgebra, which we now list:

• If structure constants are doubly contracted, the result is proportional to the Killing

form, which is zero for the supergroups under consideration.

• The only invariant three-tensor is proportional to the structure constant and the only

invariant two-tensor is the invariant metric.12

11At the Wess-Zumino-Witten point, the parameters satisfy the equation: 1/f2 = k.
12These and the following are statements taken from [6]. A detailed proof is lacking. The condition of the

uniqueness of the three-tensor can be relaxed to the condition that any invariant three-tensor contracted

with the structure constants vanishes, which is a statement that has been proven in detail in an appendix

to [11] for the particular case of the psl(2|2) Lie superalgebra.
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• Traceless invariant 4-tensors made of structure constants and the invariant metric

give zero when contracted with the structure constants over two indices [6].

Using all these facts, and by using a pictorial representation of the correlation functions,

one can show that vacuum diagrams with at least one interaction vertex all vanish and

that group invariant correlation functions can be computed in the free theory. However,

in order to compute the OPEs in the theory of interest, we have to calculate the 2 and

3-point functions of the right-invariant currents Ja and (gJg−1)a, which are not fully

invariant under the group action.

In [6], it is shown that a correlation function that is invariant under only the right

group action, and which is a two-tensor under the left group action (or vice versa), can be

computed by setting all structure constants to zero. Similarly, a correlation function that

is invariant under the right group action, and a three-tensor under the left group action

can be computed by taking into account only contributions with at most one structure

constant. We will present the argument for the simplicity of the 3-point function in the

next section.

In the following we also find it instructive to compute a four-point function to second

order in the structure constants. In order to perform these calculations it is useful to

expand the various terms in the action as well as the currents to second order in the

structure constants.

Ingredients of perturbation theory. We gather all our ingredients expanded to second

order in the structure constants. We use the conventions g = eA and A = iAat
a. For the

left current components we obtain:

J = −k∂gg−1 = −k

(

∂A +
1

2
[A, ∂A] +

1

3!
[A, [A, ∂A]] + O(f3)

)

= −ki

(

∂Aa −
f bc

a

2
Ab∂Ac +

1

6
fa

bcf
c
deA

bAd∂Ae + O(f3)

)

ta

gJg−1 = k∂gg−1 = k

(

∂A +
1

2
[A, ∂A] +

1

3!
[A, [A, ∂A]] + O(f3)

)

= +ki

(

∂Aa −
f bc

a

2
Ab∂Ac +

1

6
fa

bcf
c
deA

bAd∂Ae + O(f3)

)

ta, (3.7)

where O(f3) indicates terms of third order or higher in the structure constants. The kinetic

term and the Wess-Zumino term become:

Skin =
1

4πf2

∫

d2z

(

∂Aa∂Aa −
1

12
fa

bcfaijA
b∂AcAi∂Aj + O(f4)

)

SWZ = −
k

12π

∫

C

d2zfabcAa∂Ab∂Ac + O(f3). (3.8)

The quadratic terms in the action give rise to the free propagators:

Aa(z, z)Ab(w,w) = −f2κab log µ2|z − w|2, (3.9)

where µ is an infrared regulator.
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Two-point functions. Consider the Feynman diagrams with two external lines and pull

out a structure constant where the external line enters. The rest of the diagram is now a

blob with three external lines, with two of them contracted with the structure constant (the

interaction strength). Now, from a group theoretic perspective, the three-spoked blob is

also an invariant 3-tensor, which, by the properties itemized at the beginning of the section,

is proportional to the structure constant. As a result, the whole graph is proportional to

the metric times the Killing form: fabcf
bc
d = 2ȟgad, which vanishes for the supergroups

under consideration.

The two-point functions are therefore perturbatively exact when computed by setting

all structure constants to zero and follows directly from the free propagator (3.9):

〈Ja(z, z)Jb(w,w)〉 =
f2k2κab

(z − w)2

〈(gJg−1)a(z, z)
(

gJg−1
)b

(w,w)〉 =
f2k2κab

(z − w)2

〈Ja(z, z)
(

gJg−1
)b

(w,w)〉 = 2πf2k2κabδ(2)(z − w). (3.10)

Three-point functions. Consider the Feynman diagrams that contribute to

〈Ja(z, z)Jb(w,w)Jc(x, x)〉 .

In their evaluation, there are strucutre constants coming both from the expansion of the

currents in (3.7) and also from the interaction vertices. We would like to argue that only

those diagrams which contain a single structure constant contribute. In order to show

this, consider pulling out one structure constant out of the vertex where the external line

enters. The rest of the diagram can be thought of as a blob with four external lines and

which has the group structure of a rank 4 invariant tensor. Contracting two of its indices,

the resulting graph contains a structure constant inside and vanishes, following the same

argument that allows to compute the two-point functions by setting all structure constants

to zero.

We have now shown that the group structure of the four-spoked blob is that of a

traceless rank 4 tensor. The full Feynman graph is evaluated by contracting a structure

constant with this traceless rank-4 tensor. Using the special properties of the Lie superal-

gebra of PSL(n|n) we listed earlier in the section, it is clear that such a term evaluates to

zero. Thus, the three-point functions are perturbatively exact at first order in the structure

constants. There are two non-trivial contributions to this calculation. We have one contri-

bution coming from the term proportional to the structure constants in the expansion (3.7)

of the current components, and one from the first order Wess-Zumino interaction (3.8).

Let us compute the first contribution for the JJJ three-point function in some detail:

〈Ja(z, z)Jb(w,w)Jc(x, x)〉1 =

+ ik3

〈(

∂Aa(z, z) −
1

2
fdeaAd∂Ae

)

(

∂Ab −
1

2
fdebAd∂Ae

)(

∂Ac −
1

2
fdecAd∂Ae

)〉
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= −ik3f4 1

2

(

(+)
fabc

(z − x)(w − x)2
+ (+)

f bac

(w − x)(z − x)2
+ cyclic

)

= −i
1

2
k3f4fabc z − w

(z − x)2(w − x)2
+ cyclic

= −i
3

2
k3f4fabc 1

(z − w)(w − x)(x − z)
. (3.11)

The Wess-Zumino contribution is:13

〈

Ja(z, z)Jb(w,w)Jc(x, x)
〉

2
= + ik4

〈

∂Aa(z, z)∂Ab(w,w)∂Ac(x, x)×

1

12π

∫

C

d2yfdegAg∂Ad∂Ae(y, y)

〉

= +ik4f61

2
fabc 1

(z − w)(w − x)(x − z)
. (3.12)

Adding the two contributions we get the three-point function:

〈Ja(z, z)Jb(w,w)Jc(x, x)〉 = −i
1

2
k3f4(3 − kf2)fabc 1

(z − w)(w − x)(x − z)
. (3.13)

A quick check on the calculation is that it matches the known three-point function at

the Wess-Zumino-Witten point, where it can be evaluated using the holomorphy of the

currents. All other left current three-point functions can be computed analogously. They

are (up to contact terms):

〈Ja(z, z)Jb(w,w)Jc(x, x)〉 =

(

3

2
−

kf2

2

)

−ik3f4fabc

(z − w)(w − x)(x − z)

〈Ja(z, z)Jb(w,w)(gJg−1)c(x, x)〉 =

(

1

2
−

kf2

2

)

−ik3f4fabc(z − w)

(z − w)2(x − w)(x − z)

〈(gJg−1)a(z, z)(gJg−1)b(w,w)Jc(x, x)〉 =

(

1

2
+

kf2

2

)

+ik3f4fabc(z − w)

(z − w)2(x − w)(x − z)

〈(gJg−1)a(z, z)(gJg−1)b(w,w)(gJg−1)c(x, x)〉 =

(

3

2
+

kf2

2

)

+ik3f4fabc

(z − w)(w − x)(x − z)
.

(3.14)

Coincidence limit and operator product expansions. When we take coincidence

limits of the three-point functions, we expect to be able to replace the product of two

operators by their operator product expansion. Using the general form of the current-

current operator product expansions, and the exact two-point functions, we can infer from

the above three-point functions a proposal for the current-current operator product expan-

sions. Up to contact terms the two- and three-point functions can be reproduced in their

13A minus sign arises from expanding e−S to first order.
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coincidence limits by the OPEs:14

Ja(z, z)Jb(w,w) ∼
k2f2κab

(z − w)2
+ kf2

(

3

2
−

kf2

2

)

ifab
c

Jc(w)

z − w

+(−kf2)

(

1

2
−

kf2

2

)

ifab
c

z − w

(z − w)2
(

gJg−1
)c

(w) + · · ·

Ja(z, z)(gJg−1)b(w,w) ∼ 2πk2f2κabδ(2)(z − w) + kf2
(1

2
+

kf2

2

)

ifab
c

(gJg−1)c(w)

z − w

−kf2

(

1

2
−

kf2

2

)

ifab
c

1

z − w
Jc(w) + · · ·

(gJg−1)a(z, z)(gJg−1)b(w,w) ∼
k2f2κab

(z − w)2
− kf2

(

3

2
+

kf2

2

)

ifab
c

(gJg−1)c(w)

z − w

+kf2

(

1

2
+

kf2

2

)

ifab
c

z − w

(z − w)2
Jc(w) + · · · (3.15)

When we normalize the currents as in (3.5) to agree with section 2, we find the follow-

ing OPEs:

ja
z (z)jb

w(w) ∼
(1 + kf2)2κab

4f2(z − w)2
+

i

4
(1 + kf2)(3 − kf2)fab

c

jc
w(w)

z − w

+
i

4
(1 + kf2)2fab

c

z − w

(z − w)2
jc
w(w) + · · ·

ja
z (z)jb

w(w) ∼
(1 − kf2)2κab

4f2 (z − w)2
+

i

4
(1 − kf2)(3 + kf2)

fab
c jc

w(w)

z − w

+
i

4
(1 − kf2)2

(z − w) fab
c jc

w(w)

(z − w)2
+ · · ·

ja
z (z)jb

w(w) ∼−
2π

4f2
(1 + kf2)(1 − kf2)κabδ(2)(z − w) +

i(1 + kf2)2

4

fab
c jc

w(w)

z − w

+
i(1 − kf2)2

4

fab
c jc

w(w)

z − w
+ · · · (3.16)

We can read from these formulas the coefficients of the generic current algebra (2.21):

c1 =
(1 + kf2)2

4f2
c2 =

i

4
(1 + kf2)(3 − kf2)

c3 =
(1 − kf2)2

4f2
c4 =

i

4
(1 − kf2)(3 + kf2)

and g =
i

2
(1 + kf2)(1 − kf2) . (3.17)

We note that the coefficients automatically satisfy the extra constraints (2.19) and (2.20)

one gets by requiring consistency of the current algebra with the Maurer-Cartan equation.

14From now on we will no longer always make explicit the fact that all the operators depend both on the

holomorphic as well as the anti-holomorphic coordinate at a generic point in the moduli space.
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A four-point function. From the three-point functions, we conclude that the coefficient

g is non-zero. We have argued in section 2 that that is associated to the appearance of

logarithms in the regular term of the jzjz operator product expansion. We would like

to check the coefficient of the logarithm more directly in a perturbative calculation. For

that purpose it is sufficient to study a four-point function at second order in the structure

constants. The computation will be exact at that order. In particular we want to compute

the four-point function:

〈J [a(z)(gJg−1)b](w)Jc(x)(gJg−1)d(y)〉O(f2), (3.18)

at second order in the structure constants, and in the z → w limit. We anti-symmetrized

in the a and b indices (and weighted each term with a factor 1/2). In the coincidence limit,

logarithms appear in the regular terms in the OPE between J and (gJg−1) and they will

give non-zero contribution to the four-point functions. In our calculation we focus on the

terms proportional to log |z − w|2 (and which are not contact terms).

We distinghuish the following contributions at this order. We can expand a single

current to second order, and compute in the free theory. We can expand two currents to

first order and compute in the free theory. We can add one linear Wess-Zumino interaction

term and expand one current to first order. Or we can add two linear Wess-Zumino

interaction terms and take only the leading terms in the currents. Finally, we can add one

quadratic principal chiral model interaction term, and treat the currents at zeroth order.

We found the following results. The second order term in a current cannot give rise to

logarithmic contributions. Two currents at first order can be contracted to give a logarithm.

It is easy to see that there are few contributions to the terms of interest, and they give:

−
k4f6

8
fabef cd

e log µ2|z − w|2
1

(z − x)2(w − y)2
(3.19)

The term linear in the Wess-Zumino interaction term gives no contribution. The term

arising from the quartic interaction term in the principal chiral model doubles the previous

non-zero term. The Wess-Zumino term squared gives a contribution of a different type

equal to:

+
k6f10

4
log µ2|z − w|2fabef cd

e

1

(z − x)2(w − y)2
. (3.20)

The latter contribution is the hardest to calculate. It consists of the order of 216 free field

contractions, which exhibit a lot of symmetries. Some logarithmic terms in the double

integrals over the points of interaction need to be evaluated, but all of these integrals are

straightforwardly performed using partial integrations and other elementary techniques.

The tedious but elementary calculation leads to the above result. In total we get, at

second order in the structure constants, and only regarding the logarithmic contribution

in z,w:

〈J [a(z)(gJg−1)b](w)Jc(x)(gJg−1)d(y)〉O(f2),log =

−
1

4
k4f6(1 − k2f4)fabef cd

e log µ2|z − w|2
1

(z − x)2(w − y)2
. (3.21)
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Using the relative normalization between the J ’s and the j’s, we find that

〈j[a
z (z)j

b]
w(w)jc

x(x)jd
y (y)〉O(f2),log =

−
1

64f2
(1 + kf2)2(1 − kf2)(1 − k2f4)fabef cd

e log µ2|z − w|2
1

(z − x)2(w − y)2
. (3.22)

Let us see how to use this result to check the coefficient g in the operator product expansion.

From the expressions for the operator product algebra (2.21) and from the exact three-point

functions (3.14), we find that the logarithmic term in the normalized four-point function

in the coincidence limit z → w is:

〈ja
z jb

wjc
xjd

y 〉 ≈ −
g

4
fab

e log µ2|z − w|2〈(∂je
w − ∂je

w)jc
xjd

y 〉

≈ +
g

4

1

8k3f6
(1 + kf2)(1 − kf2)fab

e log µ2|z − w|2

(

−∂w(1 − kf2)ik3f4f edc 1

2
(1 + kf2)

w − y

(w − y)2(x − w)(x − y)

−∂w(1 + kf2)f ecd(−)ik3f41

2
(1 − kf2)

w − x

(w − x)2(y − w)(y − x)

)

≈ +i
g

32f2
(1 + kf2)2(1 − kf2)2fab

ef
ecd

log µ2|z − w|2
1

(w − x)2(w − y)2
. (3.23)

We recall the value for g:

g =
i

2
(1 + kf2)(1 − kf2), (3.24)

so the operator algebra and the three-point functions predict:

〈ja
z jb

wjc
xjd

y 〉 ≈ −
1

64f2
(1 + kf2)2(1 − kf2)2(1 − k2f4)fab

ef
ecd

log µ2|z − w|2
1

(w − x)2(w − y)2
. (3.25)

The prediction is matched by our perturbative calculation of the four-point function. More-

over, since the coefficient g is fixed to all orders by the calculation of the three-point func-

tion, our result at second order in the structure constants is exact. The calculation is a good

consistency check on the correlators and operator product expansions. The full four-point

function is a function of the cross ratio of the four insertion points, in which the regulator

µ drops out. We note also that the appearance of logarithms in four-point functions of

operators that differ by an integer in their conformal dimension is generic. In our case,

the scale µ must appear in the operator product expansion because we lifted space-time

fermionic zeromodes [6]. These in turn are linked to the non-diagonalizable nature of the

scaling operator in sigma-models on supergroups [24].
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3.3 Summary of the current algebra

We summarize the current algebra for the left group action:

ja
z (z)jb

z(w) =
(1 + kf2)2κab

4f2(z − w)2
+

i

4
(1 + kf2)(3 − kf2)

fab
c jc

z(w)

z − w

+
i

4
(1 + kf2)2

z − w

(z − w)2
fab

c jc
z(w)+ : ja

z jb
z : (w)

ja
z (z)jb

z(w) = −
π

4f2
(1 + kf2)(1 − kf2)κabδ(2)(z − w) +

i(1 + kf2)2

4

fab
c jc

z(w)

z − w

+
i(1 − kf2)2

4

fab
c jc

z(w)

z − w
−

i

8
(1 − k2f4)fab

c log |z − w|2
(

∂jc
z(w) − ∂jc

z(w)
)

+ : ja
z jb

z : (w)

ja
z (z)jb

z(w) =
(1 − kf2)2κab

4f2(z − w)2
+

i

4
(1 − kf2)(3 + kf2)

fab
c jc

w(w)

z − w

+
i(1 − kf2)2

4

z − w

(z − w)2
fab

c jc(w)+ : ja
z jb

z : (w) . (3.26)

The current algebra for the right group action can be obtained through the combined

operation g → g−1 and worldsheet parity P , which is a symmetry of the model

4 Conformal perturbation theory

In this section we study Wess-Zumino-Witten models with a perturbed kinetic term, both

for its intrinsic interest and as a tractable example of conformal perturbation theory. For

a general group manifold, the deformed model becomes non-conformal. For supergroup

manifolds with vanishing Killing form, the models remain conformal. In the earlier sections,

we have computed, using the exact two- and three-point functions, the current algebra of

the deformed theory. In this section, we re-derive these results using conventional conformal

perturbation theory. This will be a consistency check of the deformed conformal current

algebra we have obtained in equation (3.26).

4.1 The current algebra in the Wess-Zumino-Witten model

We first review the chiral current algebra of the Wess-Zumino-Witten model. We recall

the action

SWZW =
k

16π

∫

d2xTr′[−∂µg−1∂µg] + kΓ (4.1)

where Γ is the Wess-Zumino term, and the field g(z, z) takes values in a (super)group G.

The model has a global GL × GR invariance by left and right multiplication of the group

element. The currents associated to these symmetries are (in complex coordinates):

J(z) = −k∂gg−1 and J(z) = kg−1∂g . (4.2)

The right-invariant current J(z) is holomorphic and generates the left-action of the group

GL. The left-invariant anti-holomorphic current J generates the right translation by a
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group element. The components of the current J satisfy the OPE:

Ja(z)Jb(w) ∼
kκab

(z − w)2
+ ifab

c
Jc(w)

z − w
, (4.3)

and the components of the current J(z) satisfy the same OPE, with anti-holomorphic

coordinates instead of holomorphic ones. In particular, in our conventions the pole term

keeps the same sign. These currents generate a large chiral affine current algebra whose

existence is useful in solving the model via the Knizhnik-Zamolodchikov equations.

4.2 Perturbation of the kinetic term: classical analysis

We are interested in the following marginal deformation of the Wess-Zumino-Witten model:

S = SWZW +
λ

4πk

∫

d2z Φ(z, z) . (4.4)

where

Φ =
1

2
(: Jc(gJg−1)c : + : (gJg−1)cJ

c :) . (4.5)

In other words, we perturb the kinetic term by multiplying it with a factor 1+λ. Comparing

the action with the action in the earlier section, we find that λ is related to the kinetic

coefficient f defined in the previous section by the relation

1

f2
= k(1 + λ) . (4.6)

We note that, analogous to the composite operator that appeared in the Maurer-Cartan

equation, we have chosen a symmetric combination of the product of J and gJg−1 operators

to represent the marginal operator in the quantum theory.

4.3 The current-current operator product expansions

In this subsection we compute the correction to the holomorphic current-current operator

product expansion induced by the perturbation of the kinetic term of the Wess-Zumino-

Witten model for a simple (super) Lie algebra. In order to perform the calculation we

require the OPEs between the currents J and gJg−1 at the WZW point. These are obtained

by requiring that the Maurer-Cartan equation holds in the quantum WZW model, as shown

in appendix B: we compute the OPE of the current J with the Maurer-Cartan equation

for a generic value of the dual Coxeter number and demand that it vanish. This constraint

leads to the operator product expansion

Ja(z)(gJg−1)b(w,w) = 2πkκabδ(2)(z − w) + ifab
c

(gJg−1)c(w,w)

z − w
+ : Ja(gJg−1)b : (w,w) .

(4.7)

A similar demand on contact terms and the most singular terms in the OPE of (gJg−1)

with the Maurer-Cartan equation leads to the OPE

(gJg−1)a(z, z)(gJg−1)b(w,w) =
kκab

(z − w)2
+ ifab

c

Jc(w)(z − w)

(z − w)2
− 2ifab

c

(gJg−1)c(w,w)

z − w

+ : (gJg−1)a(gJg−1)b : (w,w) . (4.8)
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A general discussion of higher order corrections to operator product expansions is given

in appendix A. Here we focus on applying the discussion to the case of a supergroup

with vanishing Killing form. We compute the corrections induced by the exactly marginal

perturbation to the JaJb OPE. The nth order correction is denoted by

(JJ)ab
n (z − w,w) =

[

Ja(z, z)
(−λ)n

(4πk)nn!

n
∏

i=1

∫

d2xiΦ(xi, xi)

]

Jb(w,w) (4.9)

where the square bracket means that we have to contract Ja(z, z) with all the inte-

grated operators before we contract it with Jb(w,w). We define Ha
n(z, z) to be this com-

plete contraction:

Ha
n(z, z) =

[

Ja(z, z)
1

(4πk)nn!

n
∏

i=1

∫

d2xiΦ(xi, xi)

]

. (4.10)

One can similarly define another contraction, with J replaced by the current (gJg−1)a:

H
a
n(z, z) =

[

(gJg−1)a(z, z)
1

(4πk)nn!

n
∏

i=1

∫

d2xiΦ(xi, xi)

]

. (4.11)

The basic building blocks we need to carry out this computation are the OPE of the

currents Ja and (gJg−1)a with the marginal operator Φ. As we will see, once these OPEs

are obtained, the nth order correction can be obtained by a process of iteration. Here, we

list the two OPEs of interest and refer the reader to appendix B for details.

Ja(w)

∫

d2xΦ(x, x) ∼ k

∫

d2x
(gJg−1)a(w,w)

(w − x)2
+ 2πkJa(w)

(gJg−1)a(w,w)

∫

d2xΦ(x, x) ∼ 6πk(gJg−1)a(w,w) − k

∫

d2x
Ja(x, x)

(w − x)2
. (4.12)

With these basic OPEs, let us contract the current with one of the integrated marginal op-

erators:

Ha
n(z, z) =

n

(4πk)nn!

∫

d2x

(

k(gJg−1)a(x, x)

(z − x)2
+ 2πkδ(2)(z − x)Ja(x, x)

)

n−1
∏

i=1

∫

d2xiΦ(xi, x
i)

=
1

4π

∫

d2x

(

H
a
n−1(x, x)

(z − x)2

)

+
1

2
Ha

n−1(z, z) (4.13)

One can do a similar operation on H
a
n and we get

H
a
n(z, z) =

n

(4πk)nn!

[

6πk(gJg−1)a(z, z) −

∫

d2x
kJa(x, x)

(z − x)2

] n−1
∏

i=1

∫

d2xiΦ(xi, x
i)

=
3

2
H

a
n−1(z, z) −

1

4π

∫

d2x

(

Ha
n−1(x, x)

(z − x)2

)

. (4.14)

– 21 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
7

These are coupled recursion relations for Ha
n and H

a
n subject to the initial conditions:

Ha
0 (z, z) = Ja(z, z)

H
a
0(z, z) = (gJg−1)a(z, z) (4.15)

These recursion relations have the following solutions:

Ha
n(z, z) =

(

1 −
n

2

)

Ja(z, z) +
n

2

1

2π

∫

d2x
(gJg−1)a(x, x)

(z − x)2

H
a
n(z, z) =

(

1 +
n

2

)

(gJg−1)a(z, z) −
n

2

1

2π

∫

d2x
Ja(x, x)

(z − x)2
. (4.16)

In particular we deduce that

(JJ)ab
n (z − w,w) =(−λ)nJb(w,w)

[

(

1 −
n

2

)

Ja(z, z) +
n

2

1

2π

∫

d2x
(gJg−1)a(x, x)

(z − x)2

]

=(−λ)n
[

(

1 −
n

2

)

(

kκab

(z − w)2
+ ifabc Jc(w)

z − w

)

+
n

2

1

2π

∫

d2x
1

(z − x)2

(

2πkκabδ(2)(z − x) + ifabc (gJg−1)c(w,w)

x − w

)]

=(−λ)n
[

kκab

(z − w)2
+ ifabc

(

1 −
n

2

) Jc(w)

z − w

+i
n

2
fabc(gJg−1)c(w,w)

z − w

(z − w)2
+ · · ·

]

.

(4.17)

We can now sum the perturbative series in λ. We get the OPE in the perturbed theory:

Ja(z, z)Jb(w,w) =

∞
∑

n=0

(−λ)n(JJ)ab
n (z − w,w)

=
1

1 + λ

kκab

(z − w)2
+

2 + 3λ

2(1 + λ)2
ifabc Jc(w)

z − w

−
λ

2(1 + λ)2
ifabc(gJg−1)c(w,w)

z − w

(z − w)2

Using the map (kf2)−1 = 1 + λ, one can check that this coincides with the OPE in

equation (3.15). With the same techniques we can also compute the corrections to the

Ja(gJg−1)b and (gJg−1)a(gJg−1)b OPEs. We get the results

Ja(z, z)(gJg−1)b(w,w) =
1

1 + λ
2πkκabδ(2)(z − w) + ifabc 2 + λ

2(1 + λ)2
(gJg−1)c(w,w)

z − w

−ifabc λ

2(1 + λ)2
Jc(w)

z − w
+ · · · (4.18)

(gJg−1)a(z, z)(gJg−1)b(w,w) =
1

1 + λ

kκab

(z − w)2
−

4 + 3λ

2(1 + λ)2
ifabc(gJg−1)c(w,w

z − w

+
2 + λ

2(1 + λ)2
(z − w)ifabcJc(w)

(z − w)2
+ · · · (4.19)

Again this matches with the OPE obtained in equation (3.15).
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Summary. In this section, we have shown by resumming conformal perturbation the-

ory that the deformed current algebra we obtain this way matches the algebra obtained

in section 3 through the calculation of 2- and 3-point functions to all orders in perturba-

tion theory.

5 The current algebra on the cylinder

In this section we consider the sigma-model on a cylinder and Fourier decompose the

current algebra. The representation in terms of Fourier modes is often more conventient.

To put the algebra on a cylinder, we first compute the operator algebra on the plane, and

then compactify the plane. We consider the complex plane z = σ − iτ and consider τ as

time and σ as the spatial coordinate. Denoting the currents as jµ(σ, τ), the commutator of

equal-time operators is defined to be the limit of the difference of time-ordered operators

(evaluated at τ = 0)

[ja
µ(σ, 0), jb

ν (0, 0)] = lim
ǫ→0

(

ja
µ(σ, iǫ)jb

ν (0, 0) − jb
ν(0, iǫ)j

a
µ(σ, 0)

)

. (5.1)

Using this definition, let us compute the commutators for the holomorphic component of

the current (we suppress the τ = 0 argument within the currents in what follows):

[ja
z (σ), jb

z(0)] = lim
ǫ→0

{

c1κ
ab

(σ − iǫ)2
+ fab

c

(

c2

σ − iǫ
jc
z(0) + (c2 − g)

σ + iǫ

(σ − iǫ)2
jc
z(0)

)

−
c1κ

ab

(σ + iǫ)2
− fab

c

(

c2

−σ − iǫ
jc
z(σ) + (c2 − g)

−σ + iǫ

(σ + iǫ)2
jc
z(σ)

)}

+ . . .

= −2πic1δ
′(σ)κab + 2πic2δ(σ)fab

cj
c
z(0) + 2πi(c2 − g)δ(σ)fab

cj
c
z(0) + . . . (5.2)

where we used

lim
ǫ→0

1

σ − iǫ
−

1

σ + iǫ
= 2πiδ(σ)

lim
ǫ→0

1

(σ − iǫ)2
−

1

(σ + iǫ)2
= −2πiδ′(σ)

lim
ǫ→0

σ + iǫ

(σ − iǫ)2
−

σ − iǫ

(σ + iǫ)2
= 2πiδ(σ). (5.3)

For other components we find:

[ja
z (σ), jb

z(0)] = +2πic3δ
′(σ)κab − 2πic4δ(σ)fab

cj
c
z(0) − 2πi(c4 − g)δ(σ)fab

cj
c
z(0)

[ja
z (σ), jb

z(0)] = −2πi(c4 − g)δ(σ)fab
cj

c
z(0) + 2πi(c2 − g)δ(σ)fab

cj
c
z(0) . (5.4)

It is now straightforward to compactify σ ≡ σ + 2π and Fourier decompose the operator

algebra on the cylinder using:

jz = +i
∑

n∈Z

e−inσjz,n

jz = −i
∑

n∈Z

e−inσjz,n

δ(σ) =
1

2π

∑

n∈Z

einσ. (5.5)
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We find:

[ja
z,n, jb

z,m] = c1κ
abnδn+m,0 + c2f

ab
cj

c
z,n+m − (c2 − g)fab

cj
c
z,n+m

[ja
z,n, jb

z,m] = −c3κ
abnδn+m,0 + c4f

ab
cj

c
z,n+m − (c4 − g)fab

cj
c
z,n+m

[ja
z,n, jb

z,m] = (c4 − g)fab
cj

c
z,n+m + (c2 − g)fab

cj
c
z,n+m. (5.6)

We can check the validity of the Jacobi identity, which follows from the validity of the

Maurer-Cartan equation along with the Jacobi identity for the Lie algebra of G.

Conserved charges

We note that the current one-form satisfies the conservation equation d ∗ j = 0, and

that therefore the integral of the time-component of the current over the spatial circle is

conserved in time. The corresponding charges are easily determined to be the sum of the

zero-modes of the current algebra. They generate the Lie algebra of G. We recall that the

group action generated by these charges corresponds to the left group action GL, and that

there is an analogous right group action GR.

Kac-Moody subalgebra. Let us consider the combination of the currents ja
z − ja

z and

compute the commutation relations of its modes with themselves. Using the above basic

commutation relations, we find

[(ja
z,n + ja

z,n), (jb
z,m + jb

z,m)] = (c1 − c3)κ
abnδm+n,0 + (c2 + c4 − g)fab

c(j
c
z,n+m + jc

z,n+m) ,

(5.7)

which is a Kac-Moody algebra at level

k+ = −
c1 − c3

(c2 + c4 − g)2
(5.8)

as becomes manifest in terms of the rescaled currents

J a = −i
ja
z − ja

z

c2 + c4 − g
. (5.9)

We observe that for the case of the supergroup considered in the earlier section, substituting

the values of the ci in (3.17), we obtain a Kac-Moody algebra at level k+ = k, with the

currents taking the simple form

J a = (ja
z − ja

z ) . (5.10)

When we choose a real form of the supergroup that has a compact subgroup, the level k

will be integer. We also observe that the current associated to the σ-component of the

canonical right-invariant one-form dgg−1 is:

J ′a = c−jz + c+jz. (5.11)

In term of these currents, we find the mode algebra:

[J a
n ,J b

m] = −
c1 − c3

(c2 + c4 − g)2
κabnδm+n,0 + ifab

cJ
c
n+m

[J ′a
n ,J b

m] = −i
c1c− + c3c+

c2 + c4 − g
κabnδm+n,0 − ifab

cJ
′c
n+m

[J ′a
n ,J ′b

m ] = (c2
−c1 − c2

+c3)κ
abnδm+n,0 + fab

c(2c2c− − 2c4c+ + g(c+ − c−))J ′c
n+m

−ifab
c(c2 + c4 − g)(c2

−c2 + c4c
2
+ − g(c2

+ + c+c− + c2
−))J c

n+m. (5.12)
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For the specific case of the supergroup model, we find

[J a
n ,J b

m] = kκabnδm+n,0 + ifab
cJ

c
n+m

[J ′a
n ,J b

m] =
(kf2 − 1)(kf2 + 1)

4f4
κabnδm+n,0 − ifab

cJ
′c
n+m

[J ′a
n ,J ′b

m ] = 0 . (5.13)

We identified a Kac-Moody subalgebra J and an infinite set of modes J ′ that commute

amongst themselves. The latter modes transform into the identity and themselves under

the Kac-Moody algebra.

We also note that we can obtain a second Virasoro algebra by applying the Sugawara

construction to the Kac-Moody algebra J . The corresponding energy-momentum tensor

generates a Virasoro algebra at central charge sdim G. It is not holomorphic. The dif-

ference of these energy momentum tensors for the left and right group is proportional to

the difference of the holomorphic and anti-holomorphic energy momentum tensors. That

indicates the existence of a non-chiral analogue of the Knizhnik-Zamolodchikov equation.

6 Conclusions

In this paper, we have performed a generic analysis of the conditions imposed on local

Lorentz covariant and PT invariant current algebras. In particular we allowed for parity-

breaking models and found a class of solutions to the conditions.

In the case for which the algebra has vanishing Killing form, we showed that one can

construct an energy momentum tensor in terms of a current component in a way similar

to the Sugawara construction. The current component is then a conformal primary and

the central charge is the (super)dimension of the group. This gives a constructive proof of

conformality of the quantum model.

We moreover computed exact two- and three-point functions for principal chiral mod-

els with Wess-Zumino term for supergroups with vanishing Killing form. Using these

exact results, we showed that the current algebra is realized in these models, and we cal-

culated the coefficients in the current algebra. We performed a check on a logarithmic

regular term by computing the relevant part of a four-point function. The algebra was

independently derived by using the techniques of conformal perturbation theory about the

Wess-Zumino-Witten point. We hope the existence of such current algebras will prove

useful in furthering the solution of these models [9–11]. Another avenue to explore is to

systematically analyze the exactness of low-order perturbation theory for various current

and group valued correlators.

One of the examples to which our discussion applies is the sigma model on the su-

pergroup PSU(1, 1|2). This particular supergroup is useful to quantize string theory on

AdS3 × S3 [6, 12]. To quantize the string in the presence of Ramond-Ramond fluxes, we

can, in this instance, use the six-dimensional hybrid formalism with eight [28] or sixteen [25]

manifest supercharges. In the first case, the PSU(1, 1|2) sigma-model is at the core of the

worldsheet theory [12].
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It is possible to realize the AdS3 × S3 spacetime as the near-horizon limit of a D5-

NS5-D1-F1 system. We can then write the parameters of the non-chiral current algebra in

terms of the numbers of D5 and NS5 branes [12]. The integer parameter k that multiplies

the Wess-Zumino term in the action is equal to the number NNS5 of NS5 branes while the

parameter 1/f is the radius of curvature of spacetime. When the number ND5 of D5-branes

is equal to zero, the parameters satisfy kf2 = 1 and the non-holomorphic component of the

right-invariant current vanishes: we have a chiral current algebra. When we turn on the

RR fluxes, we obtain the generic current algebra given in equation (3.26). It is important

to further investigate this algebra in the context of string theory on AdS3. Exploring

the integrability of these supergroup models will prove useful in understanding better the

properties of the AdS3/CFT2 correspondence. The presence of a Kac-Moody algebra at

level k over the whole moduli space of the theory may also help in the construction of the

string spectrum in AdS3 × S3 with Ramond-Ramond fluxes.

Likewise, another application of our analysis is to coset models G/H where G is a

supergroup with zero Killing form. In [7] it was shown that a number of coset models

where H is a maximal regular subalgebra are conformal to two loops. Graded supercosets

based on supergroups with vanishing Killing form are also believed to be conformal [8].

These cosets occur in the worldsheet description of certain string theory backgrounds, for

instance, they appear as the central building block of the AdS5×S5 background. Moreover,

as symmetric spaces or right coset manifolds, they retain a left group action as a symmetry

and we therefore expect that parts of our analysis still apply. It is certainly worth exploring

the quantum integrability of these coset models per se, and how it ties in with the conformal

current algebra that we have exhibited.

Acknowledgments

We would like to thank Costas Bachas, Zaara Benbadis, Denis Bernard, Christian Hagen-

dorf, Christoph Keller, Andre LeClair, Giuseppe Policastro, Thomas Quella and Walter

Troost for discussions. We are grateful to Matthias Gaberdiel, Anatoly Konechny, Thomas

Quella and an anonymous referee for comments and corrections.

A Perturbed operator product expansions

We consider the corrections to an OPE induced by an exactly marginal deformation of

a conformal field theory. The deformation parameter is denoted by λ. In the deformed

theory, we can write the OPE between two operators A and B as:

lim
z→w

A(z)B(w) = C(z,w) =
∑

n≥0

λnCn(z − w,w) , (A.1)

where it is implicit that the dependence on the variables does not have to be holomorphic.

We expand the result in a basis of operators evaluated at the point w. The operator

Cn(z − w,w) is usually written as a series in powers of z − w. It is not obvious that the

operators A and B (and therefore C) are well-defined operators in the perturbed conformal
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field theory, but we will assume that that is the case for the model at hand. Let us see

how to compute the operators Cn(z − w,w) at order n. By definition, we have:

lim
z→w

〈A(z)B(w)φ1(x1) . . . φp(xp)〉λ =

〈





∑

n≥0

λnCn(z − w,w)



 φ1(y1) . . . φp(yp)

〉

λ

(A.2)

for any operators φ1(y1) . . . φp(yp). If we want to perform the computation at the non-

perturbed point, we write the previous equality as:

lim
z→w

〈

A(z)B(w)φ1(y1) . . . φp(yp)





∑

m≥0

λm

m!

m
∏

i=1

∫

d2xiΦ(xi)





〉

0

=

〈





∑

n≥0

λnCn(z − w,w)



 φ1(y1) . . . φp(yp)





∑

m≥0

λm

m!

m
∏

i=1

∫

d2xiΦ(xi)





〉

0

(A.3)

where Φ is the exactly marginal operator we use to deform the theory. We isolate the term

proportional to λn:

lim
z→w

〈A(z)B(w)φ1(y1) . . . φp(yp)
1

n!

n
∏

i=1

∫

d2xiΦ(xi)〉0

=

〈(

n
∑

l=0

Cl(z − w,w)
1

(n − l)!

n−l
∏

i=1

∫

d2xiΦ(xi)

)

φ1(y1) . . . φp(yp)

〉

0

(A.4)

This becomes an operator identity in the non-perturbed theory:

lim
z→w

A(z)B(w)
1

n!

n
∏

i=1

∫

d2xiΦ(xi) =
n
∑

l=0

Cl(z − w,w)
1

(n − l)!

n−l
∏

i=1

∫

d2xiΦ(xi) . (A.5)

The previous equation defines iteratively the operator Cn which appears in the operator

product expansion at order n.

We would like to give a prescription to compute the n-th order term in the OPE,

Cn(z − w,w). At zeroth order, the definition is

lim
z→w

A(z)B(w) = C0(z − w,w) . (A.6)

As expected the zeroth-order OPE is the OPE in the non-deformed model. At order one,

we have

lim
z→w

A(z)B(w)

∫

d2xΦ(x) = C0(z − w,w)

∫

d2xΦ(x) + C1(z − w,w) (A.7)

Here is one proposal on how to deal with the left-hand side of this equation. First we let

the operator A(z) approach B(w) and Φ(x) (separately):

lim
z→w

A(z)B(w)

∫

d2xΦ(x) = lim
z→w

(

(AB)(z − w,w)

∫

d2xΦ + B(w)

∫

d2x(AΦ)(z − x, x)

)

(A.8)
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where (AB)(z − w,w) denotes the contraction of A(z) and B(w) (in the unperturbed

theory), with the resulting operators evaluated at the point w. It is clear that the first

term on the right-hand side is equal to C0(z − w,w)
∫

d2xΦ(x), so the OPE at first-order

is given by the second term:

C1(z − w,w) = lim
z→w

B(w)

∫

d2x(AΦ)(z − x, x) . (A.9)

At higher order, the same structure appears. We can always recognize in the computation

the lower-order contributions, and isolate the highest-order term. We use the definition

lim
z→w

A(z)B(w)
1

n!

n
∏

i=1

∫

d2xiΦ(xi) =

n
∑

l=0

Cl(z − w,w)
1

(n − l)!

n−l
∏

i=1

∫

d2xiΦ(xi) . (A.10)

To evaluate the left-hand side, we let the operator A(z) approach the other ones. As it

approaches B(w), we generate the term with l = 0 on the right-hand side. As it approaches

one of the copies of the marginal operator Φ, we get

lim
z→w

B(w)
1

n!

∫

d2x(AΦ)(z − x, x)
n−1
∏

i=1

∫

d2xiΦ(xi) (A.11)

To carry on, we take the operators (AΦ)(z − x, x) that was just generated at the point

x and let it approach the other operators in the expression. If it approaches B(w), then

we generate the term with l = 1 in the right-hand side of the definition. Otherwise we

generate a new expression on which we apply the same procedure.

Finally, we understand how to obtain directly the order-n OPE Cn(z − w): it is the

term that we get by first contracting A(z) with all the integrated operators, and then

contracting with B(w) at the very end. We will denote it as:

Cn(z − w,w) =

[

A(z)
1

n!

n
∏

i=1

∫

d2xiΦ(xi)

]

B(w) (A.12)

All the operators inside the square brackets have to be contracted, before performing the

last contraction with the operator outside the square brackets.

We should stress that the previous procedure is not always well-defined. In the com-

putation described in the bulk of this paper, this prescription leads to an unambiguous

result for the poles of the current-current OPEs. However, in a more general context, the

integrals appearing in the above calculations need a more careful regularization.

B Detailed operator product expansions

In this appendix we show how to compute OPEs involving the operator (gJg−1) in the

WZW model.
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The contact terms. It is natural to postulate contact terms between the left- and right-

invariant currents (see e.g. [29]). Indeed, even for a U(1) current algebra, contact terms

can be derived from the representation of the current algebra in terms of a free boson

and its logarithmic propagator. Since at large level k, the group manifold flattens and

is equivalent to a set of free fields, we do expect contact terms to arise. We propose the

following contact terms:

Ja(z, z)(gJg−1)b(w,w) ∼ 2πkκabδ(2)(z − w) + · · · (B.1)

The Maurer-Cartan equation in the quantum theory. In the quantum theory, the

composite operator in the Maurer-Cartan equation is ambiguous due to normal ordering.

With our choice of normal ordering, it is natural to propose the quantum Maurer-Cartan

equation

∂Jc + ∂(gJg−1)c +
i

2k
f c

de

(

: Jd(gJg−1)e : + :
(

gJg−1
)e

Jd :
)

= 0 . (B.2)

One way to check this proposal is to compute the OPE between the current components

Ja and the operator on the left hand side of equation (B.2) which is classically zero due to

the Maurer-Cartan equation. In the calculation, it is crucial to apply the normal ordering

prescription we introduced in section 2. We not only confirm the above proposal for the

quantum Maurer-Cartan equation, but also find that we need to fix the OPE between Ja

and (gJg−1)b to be

Ja(z)(gJg−1)b(w,w) ∼ 2πκabδ(2)(z − w) + ifab
c

(gJg−1)c(w,w)

z − w
+ : Ja(gJg−1)b : (w,w) .

(B.3)

Let us show this calculation in some detail in order to illustrate the techniques involved.

Using the holomorphy of the current J and the knowledge of the naive conformal dimensions

of the operators, we can make the ansatz

Ja(z)(gJg−1)b(w,w) = 2πkκabδ(2)(z − w) + αifabc (gJg−1)c(w,w)

z − w
+ : Ja(gJg−1)b : (w,w)

(B.4)

With the definition of the normal ordering above, let us compute the operator product

expansion between Ja(z) and the Maurer-Cartan equation. We distinguish two terms.

The first term is

Ja(z)
(

∂Jc(w) + ∂(gJg−1)c(w,w)
)

=

∂w

(

kκac

(z − w)2
+ ifacd Jd(w)

z − w

)

+∂w

(

2πkκacδ(2)(z − w) + αifacd (gJg−1)d(w,w)

z − w

)

+ · · ·

= −ifacdJd(w)2πδ(2)(z − w) + αifacd (gJg−1)d(w,w)

(z − w)2

+ifacd

(

α ∂(gJg−1)d(w,w) + ∂Jd(w)
)

z − w
+ · · · (B.5)
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From the last terms we see that we can obtain a pole term proportional to the Maurer-

Cartan equation if we put α = 1. It can be shown that this is the only consistent possibility,

and we will freely put α = 1 from now on. The second term with an extra minus sign is

given by

−
if c

de

k
Ja(z) lim

:x→w:
(Jd(x)(gJg−1)e(w,w) + (gJg−1)e(w,w)Jd(x)) . (B.6)

where we have used the normal ordering prescription. Let us start with the first of the two

terms in (B.6) (suppressing the overall − i
k
f c

de):

Ja(z) lim
:x→w:

Jd(x)(gJg−1)e(w,w) = lim
:x→w:

{[

kκad

(z − x)2
+ i

fad
g Jg(x)

(z − x)

]

(gJg−1)e(w,w)

+Jd(x)

[

2πkκaeδ(2)(z − w) + iα
fae

g (gJg−1)g(w,w)

(z − w)

]}

. (B.7)

We perform successive contractions, and subtract singular terms according to the normal

ordering procedure to obtain

− 2iπf ca
d δ(2)(z − w)Jd(w) −

i(f ca
d δd

h − α
k
f c

def
ad
g f ge

h )(gJg−1)h(w,w)

(z − w)2

+
f c

de(f
ad
g : Jg(gJg−1)e : (w,w) + αfae

g : Jd(gJg−1)g : (w,w))

k(z − w)
. (B.8)

When α = 1 and using the Jacobi identity, we can simplify further:

−2πif ca
d δ(2)(z−w)Jd(w)−i

(

1 +
2ĥ

k

)

f ca
d (gJg−1)d

(z − w)2
−

f ca
d fd

ge : Jg(gJg−1)e : (w,w)

k(z − w)
. (B.9)

Analogously, the second part of the second term becomes

− 2πif ca
d δ2(z − w)Jd(w) − i

(

1 −
2ĥ

k

)

(f ca
d (gJg−1)d

(z − w)2

+
f c

de

k(z − w)

(

fae
g : (gJg−1)gJd : (w,w) + fad

g : (gJg−1)eJg : (w,w)
)

. (B.10)

Combining the two parts of the second term we find

2πifac
d δ2(z − w)Jd(w) +

ifac
d (gJg−1)d

(z − w)2

+
fac

d fd
eg

(

: (gJg−1)gJe : (w,w)+ : Je(gJg−1)g : (w,w)
)

2k(z − w)
. (B.11)

Comparing with the first term, we see that the contact term as well as the double pole term

cancel exactly while the single pole term vanishes using the Maurer-Cartan equation itself,

normal ordered as in our proposal. We note that the operator product expansion between
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Ja and (gJg−1)b obtained this way matches the operator product expansion obtained

in (3.15) at the Wess-Zumino-Wien point.

We will also need the OPE of (gJg−1)a(z, z) with itself at the Wess-Zumino-

Witten point:

(

gJg−1
)a

(z, z)(gJg−1)b(w,w) ∼
kκab

(z − w)2
+

ifab
c (z − w)Jc(w)

(z − w)2
− 2

ifab
c (gJg−1)c(w,w)

z − w
.

(B.12)

The coefficients can be argued for by analyzing the contact and most singular terms in the

OPE of the current gJg−1 with the Maurer-Cartan equation.

Operator product expansions of currents with marginal operator. Since the

computations are fairly similar, let us consider the more complicated OPE of the current

(gJg−1)a(w,w) with the marginal operator Φ. The first part of the computation involves

the OPE

(

gJg−1
)b

(w,w) lim
:y→x:

Jc(y)(gJg−1)c(x, x) ∼

lim
:y→x

{(

2πkδ(2)(w − y) +
if bc

d (gJg−1)d(y, y)

w − y

)

(gJg−1)c(x, x)

+Jc(y)

(

kδb
c

(w − x)2
+

if b
cd(w − x)Jd(x)

(w − x)2
−

2if b
cd(gJg−1)d(x, x)

w − x

)}

∼ 2πkδ(2)(w − x)(gJg−1)b(x, x) +
kJb(x)

(w − x)2
−

2if b
cd

(w − x)
: Jc(gJg−1)d : (x, x)

+
if b

cd(w − x)

(w − x)2
: JcJd : (x) −

if b
cd

w − x
: (gJg−1)c(gJg−1)d : (x, x) . (B.13)

Similarly, exchanging the order of J and gJg−1, we find an identical OPE to the above

one except that the terms in the last line have opposite sign. Combining these two, we

therefore find that

(

gJg−1
)b

(w,w)Φ(x, x) ∼ 2πkδ(2)(w − x)
(

gJg−1
)b

(x, x) +
kJb(x)

(w − x)2

−
2if b

cd

w − x

(

:
(

gJg−1
)d

Jc : + : Jc
(

gJg−1
)d

:
)

(x, x) .(B.14)

Now, the last term can be rewritten using the Maurer-Cartan identity and we obtain

(

gJg−1
)b

(w,w)Φ(x, x) ∼ 2πkδ(2)(w − x)
(

gJg−1
)b

(x, x) +
kJb(x)

(w − x)2

+
2k

w − x

(

∂Jb + ∂(gJg−1)b
)

(x, x) . (B.15)

Integrating over the location of the marginal operator and using the identities

∫

d2x
∂Jb

w − x
= −

∫

d2x
Jb(x)

(w − x)2
(B.16)

∫

d2x
∂(gJg−1)b

w − x
= 2π(gJg−1)a(w,w) , (B.17)
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we find the contraction

(

gJg−1
)b

(w,w)

∫

d2xΦ(x, x) = 6πk
(

gJg−1
)b

(w,w) − k

∫

d2x
Jb(x)

(w − x)2
. (B.18)

For the OPE of Ja(w) with the marginal operator, it turns out that both orderings lead

to the same answer, so we only exhibit the following OPE:

Jb(w) lim
:y→x:

: Jc(y)(gJg−1)c(x, x) :∼ lim
:y→x:

{(

kκbc

(w − y)2
+

if bc
d Jd(y)

w − y

)

(gJg−1)c(x, x)

+Jc(y)

(

2πkδ(2)(w − x)δb
c +

if b
cd(gJg−1)d(x, x)

w − y

)}

∼
k(gJg−1)b(x, x)

(w − y)2
+ 2πkδ(2)(w − x)Jb(x)

+
if b

cd

w − y
(: Jd(gJg−1)c : + : Jc(gJg−1)d :)(x, x)

∼2πkδ(2)(w − x)Jb(x) +
k(gJg−1)b(x, x)

(w − y)2
.

(B.19)

C Useful integrals

We tabulate a few useful integrals that have been used throughout the article (see e.g. [29]):

∫

d2x

(x − w)(x − z)
= −2π log |z − w|2 (C.1)

∫

d2x

(x − w)2(x − z)
= 2π

1

z − w
(C.2)

∫

d2x

(x − w)(x − z)2
= −2π

1

z − w
(C.3)

∫

d2x

(x − w)2(x − z)2
= 4π2δ(2)(z − w) (C.4)

∫

d2x

(z − x)2(w − x)
= −2π

z − w

(z − w)2
. (C.5)
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